No products in the cart.

Mouse Nuclear Factor kB ELISA kit

SKU Product Brand Unit Availability Price Quantity  
EK-07-0942
Mouse Nuclear Factor kB ELISA kit
Erpan Tech In stock

Specifications        

Product Cat#: EK-07-0942
Product name: Mouse Nuclear Factor kB ELISA kit
Target Name: NFkB
Species Reactivity: Mouse
Product Size: 48/96 Tests
Sensitivity: 0.13 ng/ml
Assay range: 1.0-25 ng/ml
Assay Time: 90 minutes
Platform: Colorimetric Microplate Reader
Conjugate: HRP
ELISA Type: Competitive ELISA
Detection Method: Colorimetric
Storage temperature: Store at 2-8°C
Stability: Stable within the expiration date under suggested storage conditions
Shipping condition: Wet ice
Kit Contents: Microtiter plate (1x), Enzyme conjugate (1 vial), Standard samples (6 vials),
Substrates (A & B, 2 vials), Stop solution (1 vial), Wash Solution (100x, 1 vial),
Balance solution (1 vial), Instruction (1 copy)
Other Names of Target: NF-KB1; EBP-1; KBF1; NF-Kappa-B; NFKB-P105; NFKB-P50; Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 1; Nuclear factor NF-kappa-B p105 subunit
Show More

Target information

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5′-GGRNNYYCC-3′, located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105.

Provider

Erpantech Laboratory

download

MSDS-EK-07-0942.pdf (75 downloads )