No products in the cart.

Anti-PER3 antibody

SKU Product Brand Unit Availability Price Quantity  
AB-06-3425
Anti-PER3 antibody
Erpan Tech In stock

Specifications        

Product type: Primary antibody
Antigen: PER3
Immunogen: Recombinant protein
Species immunized: Mouse
Isotype: IgG2b
Applications: Western Blot (1:600-1:2100); Immunohistochemistry (1:100-1:250); Immunocytochemistry (1:100-1:250); Flow Cytometry (1:100-1:150)
Reactivity: Human
Clonality (clone number): Monoclonal(9B-7D)
Form: Liquid
Buffer: 1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Concentration: 1mg/ml
Purity: Protein A affinity purified
Storage: Aliquot and freeze at -20℃. Avoid multiple freeze/thaw cycles.
Alternative names: 2810049O06Rik antibody
Cell growth inhibiting gene 13 protein antibody
Cell growth-inhibiting gene 13 protein antibody
Circadian clock protein PERIOD 3 antibody
GIG13 antibody
gPER3 antibody
Growth inhibiting protein 13 antibody
HGNC:8847 antibody
hPER3 antibody
mPer3 antibody
Per3 antibody
PER3_HUMAN antibody
Period 3 antibody
Period circadian clock 3 antibody
Period circadian protein 3 antibody
Period circadian protein homolog 3 antibody
Period homolog 3 (Drosophila) antibody
Period homolog 3 antibody
Period homolog 3, Drosophila antibody
Period3 antibody
Show More

Target information

Originally described as a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots ‘circa’ (about) and ‘diem’ (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for ‘timegivers’). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5′-CACGTG-3′) within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1, NR1D2, RORA, RORB and RORG, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. Has a redundant role with the other PER proteins PER1 and PER2 and is not essential for the circadian rhythms maintenance. In contrast, plays an important role in sleep-wake timing and sleep homeostasis probably through the transcriptional regulation of sleep homeostasis-related genes, without influencing circadian parameters. Can bind heme.

Provider

Erpantech Laboratory

download

Material-Safety-Data-Sheet.pdf (60703 downloads )